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Abstract

Physics-Informed Neural Networks (PINNs) offer a promising approach to solving
differential equations and, more generally, to applying deep learning to problems
in the physical sciences. We adopt a recently developed transfer learning approach
for PINNs and introduce a multi-head model to efficiently obtain accurate solutions
to nonlinear systems of differential equations. In particular, we apply the method
to simulate stochastic branched flows, a universal phenomenon in random wave
dynamics. We compare the results achieved by feed forward and GAN-based
PINNS on two physically relevant transfer learning tasks and show that our methods
provide significant computational speedups in comparison to standard PINNs
trained from scratch.

1 Introduction

Differential equations are used to describe a plethora of phenomena in the physical sciences but
most cannot be solved analytically. Traditionally, numerical methods have been used to approximate
solutions to differential equations. Recently, Physics-Informed Neural Networks (PINNs) have
emerged as an attractive alternative offering several compelling advantages. In particular, PINNs:
provide solutions that are in closed form, offer a more accurate interpolation scheme [[7]], are more
robust to the “curse of dimensionality” [4} 15,113} 114], and do not accumulate numerical errors [6} 11].

PINNSs are typically trained to solve only a single configuration of a given system (e.g., a single initial
condition or set of system parameters) at once, making their practical use computationally inefficient.
More recently, it was shown that one-shot transfer learning can be used to obtain accurate solutions
to linear systems of ordinary differential equations (ODEs) and partial differential equations (PDEs),
thereby eliminating the need to train the network from scratch for a new linear system [3} [9].

In this work, we build upon [3] by proposing a method that can be applied to non-linear systems.
This method consists of two phases. First, we train a base neural network with multiple output
heads, solving the system for a range of different configurations (e.g., initial conditions or potentials).
We thus learn a representative basis that captures the underlying dynamics. Second, we freeze the
weights of the base network and fine-tune new linear heads on a secondary transfer learning task.
In doing so, we adapt the pre-trained base from one task to another and cut computational costs
significantly. We demonstrate the efficacy of our approach using a system of non-linear ODEs that
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describes the trajectory of a particle through a weak random potential and can be used to model a
universal phenomenon called branched flow [2, [12]]

2 Background

2.1 PINN Models

This work uses PINNSs that are trained in an unsupervised manner, as detailed below. We compare the
performance achieved by feed forward neural networks (FFNN) and GAN models.

FFNN: The standard unsupervised neural network approach was introduced by Lagaris et al. [7] and
can be used to solve differential equations of the form

L (u(t,x)) =0, (1)
where X = (21,...,%,), u : R""! — R and £ is a differential operator. During training, we sample
(t,x) from the domain of the equation D and use this vector as input to a FENN, which outputs the
neural solution wg (¢, x). We re-parametrise this output into (¢, x) to satisfy initial and boundary
conditions exactly. Using automatic differentiation, we can compute the derivatives of this output
with respect to each of the independent variables and build the loss by summing the squared residual
over M training points,
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Note that if the network g perfectly satisfies Equation [I] then Equation 2] will be zero.

DEQGAN: Bullwinkel et al. [1]] noted that there is no theoretical reason to use the Lo norm of the
residuals over any other loss function and proposed DEQGAN, which extends the FFNN method
to GANs and can be thought of as “learning the loss function.” Rather than computing a loss
over the equation residuals, DEQGAN labels these vectors “fake” data samples and zero-centered
Gaussian noise as “real” data samples. As the discriminator gets better at classifying these samples,
the generator uy is forced to propose solutions such that the equation residuals are increasingly
indistinguishable from a vector of zeros, thereby approximating the solution to the differential
equation.

2.2 Transfer Learning with Multi-Head PINNs

Figure|[T illustrates the multi-head architecture
that we apply to FFNN and DEQGAN models to )
perform transfer learning. The output of the base Iy
neural network is passed to heads hq, ..., hr,
each of which corresponds to the solution to
the system at a particular initial condition. Im- hs U (t)
portantly, this architecture can be used to apply 0

transfer learning to non-linear problems; in this : : :
work, we consider one such system of ODEs S ’ ’

that is used to model particles moving through

. h
a weak random potential. E

Transfer learning with multi-head PINNs is per- Figure 1: Multi-head PINN architecture. Each

;florrged 13 tlw O stages. Flrit’ tyv_e 'ttfalln thedr'rt{ultl- output head h; is responsible for generating the
cad model on a given set of tnitial CONCIUONS g}, i (o the I initial condition.

until convergence. Next, we freeze the weights

of the base network and fine-tune only the out-

put heads on a second set of initial conditions. As detailed below, we use this procedure to perform
two transfer learning tasks: 1) Initial Condition Transfer, which involves fine-tuning the heads on
initial conditions that were not used to train the base. 2) Potential Transfer Learning, an even more
challenging task that allows us to obtain solutions for new initial conditions and a different potential
than the one used to train the base. Our results on these tasks suggest that the base is able to learn
highly general properties of the system.

'All code is publicly available at https://github.com/RaphaelPellegrin/Transfer-Learning-with-PINNs-for-
Efficient-Simulation-of-Branched-Flows.git.



3 Experimental Results

3.1 Branched Flow

Stochastic branched flow is a universal wave phenomenon that occurs when waves propagate in
random environments. Branching has been observed in tsunami waves [2]], electronic flows in
graphene [12], and electromagnetic waves in gravitational fields [8]. We can model a two dimensional
branched flow by considering a particle with position x = (z,y) and velocity p = (pg, py), both
functions of time ¢, traveling through a weak random potential V' (z,y). With the Hamiltonian
H(x,p) = ||pl|3/2 + V(x) we obtain Hamilton’s equations, given by the following system of ODEs

:L‘(t) = Dz (t)

y(t) = py(t)
palt) = _w 3)
p) = - 20,

For a plane wave, the initial conditions at ¢ = 0 can be chosen as (z(0),y(0),p5(0),p,(0)) =
(0,(0),1,0) [12).

We build random potentials by summing K randomly distributed Gaussian functions with covariance

matrix 02I, € R?*2 and means p; € R?, i = 1,..., K, and scaling the result by —A, where
A € R*, as in [12]. That is,
K
A 1 ,
V(x) = ~ 5.3 izzlexp (— 53 [lx — ,ui||2) ) )

In the experiments presented below, we use K = 10, A =0.1, ¢ = 0.1.
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Figure 2: Particle trajectories through weak potentials generated by FFNN models. Black lines
correspond to the 11 initial conditions used for base training, while blue lines show the solutions
obtained for 100 evenly spaced initial conditions via transfer learning after freezing the base. The
color bars indicate the value of the potential.

3.2 Details for Hamilton’s Equations

For both the FFNN and DEQGAN models, we use networks with a base consisting of 5 hidden layers
and 40 nodes. We then use L linear layers for the heads. Each head is responsible for the solution to
one ray, i.e., one initial condition z;(0) = (0,;(0),1,0), where [ = 1, ..., L, and has four outputs
corresponding to z, y, p, and p,. For head [, we denote the outputs as u;,1, u;,2, ;3 and u; 4. We
use the initial value re-parameterization proposed by Mattheakis et al.

() = [z(0)];, + (1 —e ) w(t), 1=1,....,Lyi=1,...,4 3)

which forces the proposed solution to be exactly z;(0) when ¢ = 0 and decays this constraint
exponentially in ¢.
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Figure 3: Epochs vs. Lo norm of the equation residuals for single-head (classical), multi-head (base

training) and single-head (Initial Condition Transfer) runs using FFNN and DEQGAN models. The
multi-head model losses are computed by averaging over the 11 heads.

Table 1: Comparison between the computational efficiency (measured in epochs/sec) of training
classical single-head PINNs and performing Initial Condition Transfer for FFNN and DEQGAN.

Epochs per second
Single-Head (Classical) Multi-Head (Base) Single-Head (Transfer)

FFNN 35.27 4.13 42.34
DEQGAN 8.66 1.77 17.09

3.3 Transfer Learning Results

Our first transfer learning task, Initial Condition Transfer, allows us to efficiently obtain solutions
to the system for many initial conditions. We used multi-head models to train the base networks
on L = 11 initial conditions y;(0) = 0.0,0.1, ..., 1.0 and performed single-head transfer learning
on 100 evenly-spaced initial conditions in [0, 1] while keeping the potential fixed. All experiments
were performed on a Microsoft Surface laptop with Intel i7 CPU. Figure 2ashows the ray trajectory
solutions corresponding to the initial conditions used for base training (black) and transfer learning
(blue) obtained with the FFNN model. These trajectories also illustrate branched flows.

In Figure[3] we compare the losses achieved by the FFNN and DEQGAN models during base training
and transfer learning. We also show the residuals for classical models that do not leverage transfer
learning. Notably, we see that single-head models that use transfer learning converge more rapidly
than those trained from scratch. Further, Table[I]shows that each epoch of transfer learning (bold) is
also significantly faster. This is to be expected because transfer learning involves only fine-tuning
linear heads, rather than training an entire base network.

Our second transfer learning task, Potential Transfer Learning, utilizes the same pre-trained base
described above. This task, however, changes not only the initial conditions, but also the potential
(Equation ). More specifically, we constructed a new potential by randomly sampling ten new
Gaussian means. To avoid significantly altering the statistical properties of the system, we used the
same values of o and A. Figure 2] visualizes the ray trajectories obtained using this method and
suggests that the multi-head models are, indeed, able to learn highly general bases for the system.

4 Conclusion

In this paper, we propose a multi-head PINN architecture and a framework for performing transfer
learning with non-linear systems of differential equations. In particular, we simulate branched flows
with Hamilton’s equations and demonstrate that our method significantly reduces the computational
cost of obtaining solutions to many initial conditions in comparison to FFNN and GAN-based models
trained from scratch, without sacrificing accuracy. Finally, we show that base networks trained using
our method can transfer to new initial conditions and new potentials at the same time, indicating that
our method is able to learn highly general statistical properties of the system.



5 Broader Impact

This paper presents techniques that we hope will increase the utility of PINNs in real-world applica-
tions. In particular, the transfer learning procedure explored in this work trains a base neural network
on different configurations of the system of equations, thereby forcing the network to learn general
properties of the solutions and providing possible insights into the underlying physical problem.
Beyond computational speedups, we hope that this contributes to broader efforts within the research
community to make PINNs more interpretable, and ultimately more widely adopted. We believe that
future work focused on the theoretical foundations of PINNs will help cement these models as a third
pillar within the study of differential equations, alongside analytical and numerical methods.
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